Range queries

Fenwick trees

Yaseen Mowzer

2nd IOI Training Camp 2017 (4 February 2017)

Preliminaries

- All ranges will be half open ranges $e \in[a, b) \Longleftrightarrow a \leq e<b$
- Occasionally 1 is a more convenient starting index than 0

Susie has questions

Problem

Susie has $1<N<10^{6}$ model ships arranged in a sequence numbered $0, \ldots, N-1$. The ith boat has a size of s_{i} $\left(1<s_{i}<10^{9}\right)$. At any given time Susie may replace a boat with another boat of a different size. Given two integers a and b, report the sizes of all the ships between a and b.

Susie has questions

Problem

Susie has $1<N<10^{6}$ model ships arranged in a sequence numbered $0, \ldots, N-1$. The ith boat has a size of s_{i} $\left(1<s_{i}<10^{9}\right)$. At any given time Susie may replace a boat with another boat of a different size. Given two integers a and b, report the sizes of all the ships between a and b.
In summary

- $\sim 10^{6}$ model ships of different sizes $\sim 10^{9}$.
- Susie can change the size of a ship.
- Report all sizes of ships between a and b.

Susie's questions are easy to answer

Solution

Store an array of all the ships.
Time Complexity

- Let $m=b-a . m$ is the width of the query.
- $\mathrm{O}(N)$ construction
- $\mathrm{O}(m)$ query
- $O(1)$ update

Susie wants the size of the smallest ship

Problem

Susie also wants to know the minimum of all the ship sizes between a and b.

Susie wants the size of the smallest ship

Problem

Susie also wants to know the minimum of all the ship sizes between a and b.
Observations

- The min function is associative i.e. $\min (a, \min (b, c))=\min (\min (a, b), c)$
- In other words, min function forms a semigroup with the integers

Susie wants the size of the smallest ship

Problem

Susie also wants to know the minimum of all the ship sizes between a and b.
Observations

- The min function is associative i.e. $\min (a, \min (b, c))=\min (\min (a, b), c)$
- In other words, min function forms a semigroup with the integers
- It is unnecessary to iterate over m since
$\min \left(x_{1}, x_{2}, \ldots, x_{2 n}\right)=\min \left(\min \left(x_{1}, \ldots, x_{n}\right), \min \left(x_{n+1}, \ldots, x_{2 n}\right)\right)$
allows us to "cache" queries.
- We can query in better than $\mathrm{O}(m)$ time.

Range query tree

- Perfectly balanced binary search tree.
- The leaf nodes correspond with s_{i}.
- A parent is the minimum of it's children.

Range query tree

- Perfectly balanced binary search tree.
- The leaf nodes correspond with s_{i}.
- A parent is the minimum of it's children.

Representing a Perfectly Balanced Binary Tree

- Represent the tree as an array indexed from 1
- For every index i the
- left child is $2 i$
- right child is $2 i+1$

Update by walking up the tree

```
def update(index, value):
    index += N
    seg_tree[index] = value
    index /= 2
    while index > 0:
    seg_tree[index] = min(
    seg_tree[2 * index],
    seg_tree[2 * index + 1]
    )
    index /= 2
```


Query by walking up the tree

$$
\begin{aligned}
& \text { def query (a, b): } \\
& \mathrm{a}+=\mathrm{N} \\
& \text { b }+=\mathrm{N} \\
& \text { ans }=\infty \\
& \text { while } \mathrm{a} \text { < } \mathrm{b} \text { : } \\
& \text { if } a \% 2==1: \\
& \text { ans }=\text { min (seg_tree [a], ans) } \\
& \text { a }+=1 \\
& \text { if }(b-1) \% 2==0 \text { : } \\
& \text { ans }=\min \left(s e g _t r e e[b-1]\right. \text {, ans) } \\
& \text { a } /=2 \\
& \text { b } /=2
\end{aligned}
$$

Time complexity

- $\mathrm{O}(N)$ construction
- $\mathrm{O}(\log N)$ updates
- $\mathrm{O}(\log N)$ query

Susie updates ranges

Problem

Susie can replaces all ships between a and b with many ships of the same size.

Susie updates ranges

Problem

Susie can replaces all ships between a and b with many ships of the same size.

Solution

When updating a range, if a node is completely within the range, mark it as overridden and don't update the children.

Update code

```
def rec_update(i, l, r, v):
    a = left(i)
    b = right(i)
    if l <= a and b <= r:
        # Completely contained in the interval
        overide[i] = True
        seg_tree[i] = v
    elif l < b and a < r:
        # Intersects, thus update children
        push_down_overide(i)
        rec_update(2 * i, l, r, v)
        rec_update(2 * i + 1, l , r, v)
        seg_tree[i] = min(seg_tree[2 * i], seg_tree[2 * i + 1])
def push_down_overide(i):
    l = 2 * i
    r = l + 1
    if overide[i]:
        overide[i] = False
        overide[l] = overide[r] = True
        seg_tree[l] = seg_tree[r] = seg_tree[i]
```


Query

```
def query(i, l, r):
    a = left(i)
    b = right(i)
    if l <= a and b <= r:
        # Completely contained in the interval
        return seg_tree[i]
    elif b <= l or r <= a:
        # Don't intersect do nothing
        return }\infty\mathrm{ # Return identity
    else:
        push_down_overide(i)
        return min(query(2 * i, l, r), query(2 * i + 1, l, r))
```


Susie asks for the sum

Problem

Find the sum of the sizes of the boats between a and b. (Only updating single points at a time).

Susie asks for the sum

Problem

Find the sum of the sizes of the boats between a and b. (Only updating single points at a time).
Observation

- Addition has an identity (0)
- and an inverse operation (-)
- Addition forms a group with the integers

Susie asks for the sum

Problem

Find the sum of the sizes of the boats between a and b. (Only updating single points at a time).
Observation

- Addition has an identity (0)
- and an inverse operation (-)
- Addition forms a group with the integers

We can subtract!

Prefix sums

```
prefix_sum = [0]
for i in range(N):
    prefix_sum.append(ships[i] + prefix_sum[-1])
def query(l, r):
    return prefix_sum[r] - prefix_sum[l]
```

"Subtraction" is required

Prefix sums

```
prefix_sum = [0]
for i in range(N):
    prefix_sum.append(ships[i] + prefix_sum[-1])
def query(l, r):
    return prefix_sum[r] - prefix_sum[l]
```

"Subtraction" is required
Time Complexity

- $\mathrm{O}(N)$ construction
- O(1) query
- $\mathrm{O}(N)$ update

Update is too slow!

Fenwick trees

Ideas

- We can use a range query tree, but we can do better

Combine the prefix sum with the range query tree

Right nodes are redundant

109

Chop off the right nodes

$$
109
$$

32

15

9

Chop off the right nodes

109

We are left with N numbers

Storage

- We only have N nodes (not $2 N$)
- We use an array indexed from 1 .
- Let s be the greatest power of 2 that divides i
- Index i contains the sum of $[i-r+1, i+1)$

Updating

- We update by increasing rather than setting.
- It is easy to compute what to increase
- i is the smallest index that contains s_{i}
- $i+r$ is the next element that contains i

Computing r

We can compute the largest power of two by using i \& ~ (i - 1)

Code for fenwick tree

```
def update(i, v):
while i < N:
    fenwick_tree[i] += v
    # Go to parent
    i += (i & ~(i - 1))
def query(i):
    acc = 0 # Identity
    while i > 0:
    acc += fenwick_tree[i]
    # Go to previous
    i -= (i & ~(i - 1))
query (a,b) = query (b) - query (a)
```


Problem

Susie can also increase the size of the boats from a to b by v, but will only ask for the size of one boat.

Problem

Susie can also increase the size of the boats from a to b by v, but will only ask for the size of one boat.
We can apply a tranformation.

- $d_{i}=s_{i}-s_{i-1}$
- $d_{0}=s_{0}$

Construct a fenwick tree over d

- We can query a point just by querying query (point)
- Update a range by update($a, ~ v$) and update($b,-\mathrm{v}$)

Problem

Susie can also increase the size of the boats from a to b by v, but will only ask for the size of one boat.
We can apply a tranformation.

- $d_{i}=s_{i}-s_{i-1}$
- $d_{0}=s_{0}$

Construct a fenwick tree over d

- We can query a point just by querying query (point)
- Update a range by update($a, ~ v$) and update($b,-v$)
- Beware of off-by-one errors

Susie wants to query a range

$$
\begin{aligned}
\sum_{i=0}^{a-1} s_{i} & =\sum_{i=0}^{a-1} \sum_{j}^{i} d_{j} \\
& =\sum_{i=0}^{a-1}(a-i) d_{j} \\
& =a\left(\sum_{i=0}^{a-1} d_{i}\right)-\left(\sum_{i=0}^{a-1} i d_{i}\right)
\end{aligned}
$$

Make a Fenwick tree with $i d_{i}$ as well.

Better solution

Use a range query tree instead

