
Range queries
Fenwick trees

Yaseen Mowzer

2nd IOI Training Camp 2017 (4 February 2017)

Preliminaries

I All ranges will be half open ranges e ∈ [a, b) ⇐⇒ a ≤ e < b

I Occasionally 1 is a more convenient starting index than 0

Susie has questions

Problem
Susie has 1 < N < 106 model ships arranged in a sequence
numbered 0, . . . ,N − 1. The ith boat has a size of si
(1 < si < 109). At any given time Susie may replace a boat with
another boat of a different size. Given two integers a and b, report
the sizes of all the ships between a and b.

In summary

I ∼ 106 model ships of different sizes ∼ 109.

I Susie can change the size of a ship.

I Report all sizes of ships between a and b.

Susie has questions

Problem
Susie has 1 < N < 106 model ships arranged in a sequence
numbered 0, . . . ,N − 1. The ith boat has a size of si
(1 < si < 109). At any given time Susie may replace a boat with
another boat of a different size. Given two integers a and b, report
the sizes of all the ships between a and b.

In summary

I ∼ 106 model ships of different sizes ∼ 109.

I Susie can change the size of a ship.

I Report all sizes of ships between a and b.

Susie’s questions are easy to answer

Solution
Store an array of all the ships.

Time Complexity

I Let m = b − a. m is the width of the query.

I O(N) construction

I O(m) query

I O(1) update

Susie wants the size of the smallest ship

Problem
Susie also wants to know the minimum of all the ship sizes
between a and b.

Observations

I The min function is associative i.e.
min(a,min(b, c)) = min(min(a, b), c)

I In other words, min function forms a semigroup with the
integers

I It is unnecessary to iterate over m since

min(x1, x2, . . . , x2n) = min(min(x1, . . . , xn),min(xn+1, . . . , x2n))

allows us to “cache” queries.

I We can query in better than O(m) time.

Susie wants the size of the smallest ship

Problem
Susie also wants to know the minimum of all the ship sizes
between a and b.

Observations

I The min function is associative i.e.
min(a,min(b, c)) = min(min(a, b), c)

I In other words, min function forms a semigroup with the
integers

I It is unnecessary to iterate over m since

min(x1, x2, . . . , x2n) = min(min(x1, . . . , xn),min(xn+1, . . . , x2n))

allows us to “cache” queries.

I We can query in better than O(m) time.

Susie wants the size of the smallest ship

Problem
Susie also wants to know the minimum of all the ship sizes
between a and b.

Observations

I The min function is associative i.e.
min(a,min(b, c)) = min(min(a, b), c)

I In other words, min function forms a semigroup with the
integers

I It is unnecessary to iterate over m since

min(x1, x2, . . . , x2n) = min(min(x1, . . . , xn),min(xn+1, . . . , x2n))

allows us to “cache” queries.

I We can query in better than O(m) time.

Range query tree

I Perfectly balanced binary search tree.

I The leaf nodes correspond with si .

I A parent is the minimum of it’s children.

2

5

5

5 17

15

15 20

2

9

9 14

2

2 17

Range query tree

I Perfectly balanced binary search tree.

I The leaf nodes correspond with si .

I A parent is the minimum of it’s children.

2

5

5

5 17

15

15 20

2

9

9 14

2

2 17

Representing a Perfectly Balanced Binary Tree

I Represent the tree as an array indexed from 1
I For every index i the

I left child is 2i
I right child is 2i + 1

2

5

5

5 17

15

15 20

2

9

9 14

2

2 17

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

Update by walking up the tree

def update(index , value):

index += N

seg_tree[index] = value

index /= 2

while index > 0:

seg_tree[index] = min(

seg_tree [2 * index],

seg_tree [2 * index + 1]

)

index /= 2

Query by walking up the tree

def query(a, b):

a += N

b += N

ans = ∞
while a < b:

if a % 2 == 1:

ans = min(seg_tree[a], ans)

a += 1

if (b - 1) % 2 == 0:

ans = min(seg_tree[b - 1], ans)

a /= 2

b /= 2

Time complexity

I O(N) construction

I O(logN) updates

I O(logN) query

Susie updates ranges

Problem
Susie can replaces all ships between a and b with many ships of
the same size.

Solution
When updating a range, if a node is completely within the range,
mark it as overridden and don’t update the children.

Susie updates ranges

Problem
Susie can replaces all ships between a and b with many ships of
the same size.

Solution
When updating a range, if a node is completely within the range,
mark it as overridden and don’t update the children.

Update code

def rec_update(i, l, r, v):

a = left(i)

b = right(i)

if l <= a and b <= r:

Completely contained in the interval

overide[i] = True

seg_tree[i] = v

elif l < b and a < r:

Intersects , thus update children

push_down_overide(i)

rec_update (2 * i, l, r, v)

rec_update (2 * i + 1, l , r, v)

seg_tree[i] = min(seg_tree [2 * i], seg_tree [2 * i + 1])

def push_down_overide(i):

l = 2 * i

r = l + 1

if overide[i]:

overide[i] = False

overide[l] = overide[r] = True

seg_tree[l] = seg_tree[r] = seg_tree[i]

Query

def query(i, l, r):

a = left(i)

b = right(i)

if l <= a and b <= r:

Completely contained in the interval

return seg_tree[i]

elif b <= l or r <= a:

Don ’t intersect do nothing

return ∞ # Return identity

else:

push_down_overide(i)

return min(query(2 * i, l, r), query(2 * i + 1, l, r))

Susie asks for the sum

Problem
Find the sum of the sizes of the boats between a and b. (Only
updating single points at a time).

Observation

I Addition has an identity (0)

I and an inverse operation (−)

I Addition forms a group with the integers

We can subtract!

Susie asks for the sum

Problem
Find the sum of the sizes of the boats between a and b. (Only
updating single points at a time).

Observation

I Addition has an identity (0)

I and an inverse operation (−)

I Addition forms a group with the integers

We can subtract!

Susie asks for the sum

Problem
Find the sum of the sizes of the boats between a and b. (Only
updating single points at a time).

Observation

I Addition has an identity (0)

I and an inverse operation (−)

I Addition forms a group with the integers

We can subtract!

Prefix sums

prefix_sum = [0]

for i in range(N):

prefix_sum.append(ships[i] + prefix_sum [-1])

def query(l, r):

return prefix_sum[r] - prefix_sum[l]

“Subtraction” is required

Time Complexity

I O(N) construction

I O(1) query

I O(N) update

Update is too slow!

Prefix sums

prefix_sum = [0]

for i in range(N):

prefix_sum.append(ships[i] + prefix_sum [-1])

def query(l, r):

return prefix_sum[r] - prefix_sum[l]

“Subtraction” is required
Time Complexity

I O(N) construction

I O(1) query

I O(N) update

Update is too slow!

Fenwick trees

Ideas

I We can use a range query tree, but we can do better

Combine the prefix sum with the range query tree

109

67 42

32 35 23 19

15 17 15 20 9 14 2 17

Right nodes are redundant

109

67 42 = 109− 67

32 35 = 67− 32 23 19 = 42− 23

15 17 = 32− 15 15 20 = 35− 15 9 14 = 23− 9 2 17 = 19− 2

Chop off the right nodes

109

67

32 23

15 15 9 2

15 32 15 67 9 23 2 109

Chop off the right nodes

109

67

32 23

15 15 9 2

15 32 15 67 9 23 2 109

We are left with N numbers

109 1000

67 0100

32 0010 23 0110

15 0001 15 0011 9 0101 2 0111

15 32 15 67 9 23 2 109

Storage

I We only have N nodes (not 2N)

I We use an array indexed from 1.

I Let s be the greatest power of 2 that divides i

I Index i contains the sum of [i − r + 1, i + 1)

Updating

I We update by increasing rather than setting.

I It is easy to compute what to increase

I i is the smallest index that contains si
I i + r is the next element that contains i

Computing r

We can compute the largest power of two by using i & ~(i - 1)

10101000

- 1

~ 10100111

01011000

& 10101000

00001000

Code for fenwick tree

def update(i, v):

while i < N:

fenwick_tree[i] += v

Go to parent

i += (i & ~(i - 1))

def query(i):

acc = 0 # Identity

while i > 0:

acc += fenwick_tree[i]

Go to previous

i -= (i & ~(i - 1))

query(a, b) = query(b) - query(a)

Problem
Susie can also increase the size of the boats from a to b by v , but
will only ask for the size of one boat.

We can apply a tranformation.

I di = si − si−1

I d0 = s0

Construct a fenwick tree over d

I We can query a point just by querying query(point)

I Update a range by update(a, v) and update(b, -v)

I Beware of off-by-one errors

Problem
Susie can also increase the size of the boats from a to b by v , but
will only ask for the size of one boat.

We can apply a tranformation.

I di = si − si−1

I d0 = s0

Construct a fenwick tree over d

I We can query a point just by querying query(point)

I Update a range by update(a, v) and update(b, -v)

I Beware of off-by-one errors

Problem
Susie can also increase the size of the boats from a to b by v , but
will only ask for the size of one boat.

We can apply a tranformation.

I di = si − si−1

I d0 = s0

Construct a fenwick tree over d

I We can query a point just by querying query(point)

I Update a range by update(a, v) and update(b, -v)

I Beware of off-by-one errors

Susie wants to query a range

a−1∑
i=0

si =
a−1∑
i=0

i∑
j

dj

=
a−1∑
i=0

(a− i)dj

= a

(
a−1∑
i=0

di

)
−

(
a−1∑
i=0

idi

)

Make a Fenwick tree with idi as well.

Better solution

Use a range query tree instead

109

67

32

15 17

35

15 20

42

23

9 14

19

2 17

	Insertions
	Range query/Segment trees
	Fenwick Trees
	Prefix sums

